Acoustic-to-Articulatory Mapping Based on Mixture of Probabilistic Canonical Correlation Analysis

نویسندگان

  • Hidetsugu Uchida
  • Daisuke Saito
  • Nobuaki Minematsu
چکیده

In this paper, we propose a novel acoustic-to-articulatory mapping model based on mixture of probabilistic canonical correlation analysis (mPCCA). In PCCA, it is assumed that two different kinds of data are observed as results from different linear transforms of a common latent variable. It is expected that this variable represents a common factor which is inherent in the different domains, such as acoustic and articulatory feature spaces. mPCCA is an expansion of PCCA and it can model a much more complex structure. In mPCCA, covariance matrices of a joint probabilistic distribution of acoustic-articulatory data are structuralized reasonably by using transformation coefficients of the linear transforms. Even if the number of components in mPCCA increases, the structuralized covariance matrices can be expected to avoid over-fitting. Training and mapping processes of the mPCCA-based mapping model are reasonably derived by using the EM algorithm. Experiments using MOCHATIMIT show that the proposed mapping method has achieved better mapping performance than the conventional GMM-based mapping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiview Representation Learning via Deep CCA for Silent Speech Recognition

Silent speech recognition (SSR) converts non-audio information such as articulatory (tongue and lip) movements to text. Articulatory movements generally have less information than acoustic features for speech recognition, and therefore, the performance of SSR may be limited. Multiview representation learning, which can learn better representations by analyzing multiple information sources simul...

متن کامل

Articulatory controllable speech modification based on statistical feature mapping with Gaussian mixture models

This paper presents a novel speech modification method capable of controlling unobservable articulatory parameters based on a statistical feature mapping technique with Gaussian Mixture Models (GMMs). In previous work [1], the GMM-based statistical feature mapping was successfully applied to acousticto-articulatory inversion mapping and articulatory-to-acoustic production mapping separately. In...

متن کامل

Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model

In this paper, we describe a statistical approach to both an articulatory-to-acoustic mapping and an acoustic-to-articulatory inversion mapping without using phonetic information. The joint probability density of an articulatory parameter and an acoustic parameter is modeled using a Gaussian mixture model (GMM) based on a parallel acoustic-articulatory speech database. We apply the GMM-based ma...

متن کامل

Acoustic-to-Articulatory Inversion Mapping Based on Latent Trajectory Gaussian Mixture Model

A maximum likelihood parameter trajectory estimation based on a Gaussian mixture model (GMM) has been successfully implemented for acoustic-to-articulatory inversion mapping. In the conventional method, GMM parameters are optimized by maximizing a likelihood function for joint static and dynamic features of acoustic-articulatory data, and then, the articulatory parameter trajectories are estima...

متن کامل

Statistical acoustic-to-articulatory mapping unified with speaker normalization based on voice conversion

This paper proposes a model of speaker-normalized acoustic-toarticulatory mapping using statistical voice conversion. A mapping function from acoustic parameters to articulatory parameters is usually developed with a single speaker’s parallel data. Hence the constructed mapping model can work appropriately only for this specific speaker, and applying this model to other speakers degrades the pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017